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This paper focuses on the question of the processes which can be rate-limiting for
reactive spreading in the sessile drop configuration. It will be shown that for a class
of systems, spreading kinetics is controlled by the transport of species involved in the
reaction between the drop bulk and the triple line. For these systems convection, and
especially Marangoni convection, may significantly affect the dynamics of wetting.
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1. Introduction

In non-reactive metal–ceramic systems non-wetting is usually observed, the angle θ
formed at the contact line of three phases, solid (S), liquid (L) and vapour (V), being
greater than 90◦ (Naidich 1981; Eustathopoulos & Drevet 1994). Typical examples
are the couples Cu–Al2O3 and Cu–Cgr, for which the contact angle under high vac-
uum or in inert gas is as large as 130–140◦ (Naidich 1981). However, in several fields
of materials science, e.g. joining of ceramics by brazing alloys or metal–ceramic mul-
timaterial processing by infiltration routes, good wetting is required (θ much lower
than 90◦). Although some improvement in wetting and adhesion may be produced
by tensioactive solutes (Eustathopoulos & Drevet 1994), acting by adsorption at the
metal–ceramic interface, strong effects on these properties can be obtained by specif-
ic reactive solutes forming, by reaction with the ceramic at the interface, continuous
layers of a new compound (Nicholas 1986; Loehman & Tomsia 1988; Nogi 1993).
Due to uncertainties on the driving force of reactive wetting and to the complexity
of kinetic phenomena in the sessile drop configuration, no fundamental approach has
been developed until recently on spreading kinetics in reactive systems.

This paper reviews the main results obtained on the dynamics of wetting in reac-
tive systems during the period 1993–96. In §2 the question of reactive wetting driving
force is discussed. In §3, the different processes which may be rate-limiting are con-
sidered, namely viscous flow, local chemical kinetics and solute diffusion. A new
analysis of the possible effect on wetting kinetics of convection in the liquid drop
is also presented. All experimental results given below were obtained by the sessile
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Figure 1. Contact angle versus time curve in a reactive system according to the model of
Aksay et al. (1974).

drop technique under high vacuum or in inert gas, using millimetre-size droplets and
smooth (average roughness of a few nm) monocrystalline (α-Al2O3, SiC) or vitre-
ous (carbon) substrates. Although different kinds of reaction can affect wetting (for
instance the simple dissolution of an oxide in the liquid alloy (Eustathopoulos &
Drevet 1994)) the paper focuses on interfacial reactions leading to the formation of
a dense layer of solid reaction product.

2. Driving force of reactive wetting

When a pure liquid wets the smooth and chemically homogeneous surface of an
inert solid, the wetting driving force at time t is given by

Fd(t) = σ0
SV − σ0

SL − σ0
LV cos θ(t), (2.1)

where σ0
ij are the characteristic surface energies of the system, and θ(t) is the instan-

taneous contact angle. At equilibrium, Fd = 0, which leads to the classical Young’s
equation as follows:

cos θ0 =
σ0

SV − σ0
SL

σ0
LV

. (2.2)

For reactive solid–liquid systems, no clear definition of the driving force exists at the
present time. Aksay et al. (1974) replaced the σ0

SL term in equation (2.1) by

σSL(t) = σ0
SL + ∆Gr(t), (2.3)

where ∆Gr(t) is the change in Gibbs energy released per unit area by the reaction
in the ‘immediate vicinity of the solid–liquid interface’ (Aksay et al. 1974).

Aksay et al. (1974) argue that the effect of the ∆Gr(t) term is strongest during the
early stages of contact because the interfacial rate is at its maximum when the liquid
contacts a fresh unreacted solid surface. Thereafter, the reaction kinetics slow down,
and after an initial decrease, the contact angle increases and gradually approaches
the equilibrium value (figure 1).
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Influence of reactive solute transport on spreading kinetics 873

Figure 2. Contact angle kinetics obtained for a Cu-40 at.% Si alloy on vitreous carbon and
α-silicon carbide substrates under high vacuum at 1423 K (Landry et al. 1997).

A critical discussion of this model, as well as of experiments used to validate it,
is given elsewhere (Eustathopoulos 1996). In the present paper, we will describe
two recent experiments which disagree with Aksay’s model and allow us to propose
another interpretation of reactive driving force. The first experiment is a Cu–Si
alloy on vitreous carbon (figure 2) (Landry et al. 1997). Pure copper does not wet
vitreous carbon (at 1150 ◦C, θ = 137 ± 5◦) but a Cu–40 at.% Si alloy wets well
this substrate due to the formation, at the interface, of a continuous submicron
layer of SiC. When the experiment is repeated with the same alloy on an α-SiC
monocrystalline substrate wetting kinetics are very different: very fast in the non-
reactive system (i.e. Cu–Si/SiC) and very slow in the reactive one (Cu–Si/Cv). In
fact in this system the wettable silicon carbide ‘substrate’ is fabricated in situ and
this process takes a certain time. The curves of figure 2 show first that the steady
contact angles in the reactive and the non-reactive systems are nearly the same, and
second that the contact angle decreases monotonically with time to its steady value,
in disagreement with Aksay’s model.

A slightly different procedure was used in another experiment performed with a
Cu-1 at.% Cr alloy on a Cv substrate (Landry et al. 1997). Chromium promotes
wetting of copper, forming at the interface a continuous layer a few microns in
thickness of the wettable metallic-like chromium carbide Cr7C3. After cooling, the
Cu–Cr solidified drop was dissolved, a small quantity of a Cu-1 at.% Cr alloy was
placed in the centre of the carbide layer and the wetting experiment was repeated
at the same temperature. Results (figure 3) are very similar to that of the Cu–Si
alloy with respect to the following three points: (i) spreading in the reactive couple
is much slower than in the corresponding non-reactive couple; (ii) the final contact
angle formed by the Cu–Cr alloy on the initial substrate (Cv) and on the reaction
product (chromium carbide) are nearly the same; and (iii) in the reactive system no
minimum of θ is observed.
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Figure 3. Contact angle versus time curves for a Cu-1 at.% Cr alloy on vitreous carbon and
Cr7C3 substrates at 1373 K (Landry et al. 1997).

Figure 4. Instantaneous (a) and final (b) configuration at the solid–liquid–vapour triple line
during spreading in reactive wetting.

From these and other experiments (Espié et al. 1994; Kritsalis et al. 1994), it was
concluded that wetting in reactive systems correlates with the final interfacial chem-
istry at the triple line, not with the intensity of interfacial reactions (Eustathopoulos
& Drevet 1993, 1994). Therefore, the reactive wetting driving force is

Fd(t) = σ0
LV[cos θF − cos θ(t)], (2.4)

where θF is the equilibrium contact angle of the liquid on the reaction product surface
(figure 4b) (note that this driving force is equal to the driving force in non-reactive-
wetting of a liquid drop on an infinite surface of reaction product). The question
discussed below is what are the processes which limit the velocity of the triple line
when the contact angle changes from the initial contact angle to θF.
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3. Spreading kinetics

In non-reactive systems, the spreading rate is controlled by the viscous flow and
described (for θ < 60◦) by a power function of drop base radius R versus time t:

Rn ≈ t, (3.1)

in which n, as calculated by Tanner (1979) and by de Gennes (1985) is equal to 10.
Because the viscosity of molten metals is very low, the time needed for millimetre

size droplets to reach capillary equilibrium is less than 10−1 s (Naidich 1981; Ere-
menko et al. 1994; Laurent 1988). This time is several orders of magnitude shorter
than the spreading times observed in reactive metal-ceramic systems, usually lying
in the range 101–104 s (Naidich 1981; Loehman & Tomsia 1988; Espié et al. 1994;
Landry et al. 1997; Fujii et al. 1993; Nicholas & Peteves 1994; Mortimer & Nicholas
1970, 1973). Therefore in the latter systems the rate of spreading is not controlled
by viscous resistance, but by the interfacial reaction itself. Another consequence of
the low viscosity of the liquid is that during reactive spreading the drop radius is
equal to the reaction product radius, i.e. the positions of the triple line and of the
radial reaction front are identical.

Hereafter, spreading kinetics will be discussed by means of the classical two-step
scheme used in treating kinetic phenomena, consisting of a local process at the inter-
face and transport phenomena in bulk materials. The only difference in reactive
wetting, but an important one, is that the relevant defect is not a two-dimensional
interface but a line defect, the contact line of three phases S, L and V: because the
liquid has a direct access to the solid at the triple line, the reaction rate at this
particular point is two to three orders of magnitude higher than the reaction rate
at the interface far from the triple line where the reaction occurs by slow diffusion
through a solid layer (Landry & Eustathopoulos 1996).

In the framework of this general description, two limiting cases can be defined
depending on the rate of the chemical reaction at the triple line compared to the
rate of transport of reactive solute from the drop bulk to the triple line (or of a
soluble reaction product from the triple line to the drop bulk).

(a ) Reaction-limited spreading
In the first limit case chemical kinetics at the triple line are rate-limiting because

transport within the droplet is comparatively rapid (or not needed when the drop is
made of a pure reactive metal). In this case, (i) if the reaction does not change the
global drop composition significantly, which means that the chemical environment of
the triple line is constant with time and (ii) if a steady configuration is established
at the triple line during wetting, then the rate of reaction and hence the triple line
velocity are constant with time (Landry & Eustathopoulos 1996):

R−R0 = Kt, (3.2)

where R0 is the initial drop base radius and K is a system constant, independent of
the drop volume Vd.

An example is pure Al on vitreous carbon under high vacuum (figure 5) (Landry
& Eustathopoulos 1996). In this system, wetting is promoted by the formation of
a continuous layer of micron thickness of the wettable aluminium carbide at the
interface, the final contact angle θF being about 70◦ (figure 5). After an initial stage,
between time t = 0 and time t1 = 400 s, due to deoxidation of the Al drop, the
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Figure 5. Variations with time of the contact angle and drop base radius observed in the Al/Cv
system at 1100 K (Landry & Eustathopoulos 1996) and schematic representation of interfaces
at t = t1 (left), t2 < t < tF (middle) and t > tF (right).

spreading curve R(t) presents a nonlinear part (from t1 to t2) followed by a linear
part (from t2 to tF).

The contact angle θ1 is the contact angle of pure deoxidized Al on the original
unreacted Cv surface (figure 5, bottom). θ2 is the first contact angle corresponding
to an interface fully covered by a reaction product layer. Therefore, the decrease
from θ1 to θ2 corresponds to a transition from a non-reacted to a completely reacted
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interface. For t > t2, a steady configuration is established at the triple line and, as a
result, the reaction rate and the triple line velocity are constant with time. During
this stage the macroscopically observed contact angle is not related to capillary force
equilibrium but is dictated by the drop volume and the radius of the reaction product
layer. Indeed, the advance of the liquid is hindered by the presence of a non-wettable
vitreous carbon in front of the triple line. Thus, the only way to move ahead is
by lateral growth of the wettable carbide layer until the macroscopic contact angle
equals the equilibrium contact angle of Al on the carbide.

This interpretation does not take into account the possible effect of a reac-
tion occuring ahead of the triple line. In vacuum, such a reaction may occur by
evaporation–condensation. For geometrical reasons (evidenced by considering the
direction of evaporation with regard to the substrate surface) this mechanism is
effective for non-wetting drops (θ > 90◦) and therefore may be, at least partially,
responsible of the rapid spreading observed between t1 and t2 (figure 5) (Dezellus et
al. 1998).

‘Linear wetting’ can occur in different systems and for different types of reac-
tion. Examples are Cu–Si alloys on oxidized SiC (Rado 1997), the reactive Cu–Ag–
Ti/Al2O3 system (Nicholas & Peteves 1995) or Cu–Si alloys on Cv (Landry et al.
1996; Dezellus et al. 1998). In some cases, small but significant deviations from lin-
earity were observed and attributed to roughness of the reaction layer delaying the
movement of the triple line by pinning (Landry & Eustathopoulos 1996).

(b ) Transport-limited spreading
When local reaction rates are comparatively high, the rate of lateral growth of

the reaction product at the triple line is limited by the supply of reactant from
the drop bulk to the triple line. Because the contact angle decreases continuously
during wetting, the reduction in transport field will lead to a continuous decrease
in the reaction rate and, as a result, of the rate of movement of the triple line
itself (figure 4). Therefore, time-dependent spreading rates are expected in this case
(Landry & Eustathopoulos 1996).

In the liquid, solute is transported by convection and diffusion and the governing
equation is Fick’s second law written in the referential of the triple line moving with
a velocity VTL (VTL = dR/dt):

∂C

∂t
+ VF · ∇C = D∇2C + VTL · ∇C. (3.3)

In this equation, the concentration C of reactive species is expressed in mass fraction.
VF denotes the local velocity of the fluid and results both from the movement of the
triple line and from convection generated by temperature and concentration gradients
in the liquid.

(i) Pure diffusion
Given the complexity of the real situation in the sessile drop configuration, a

simplified analysis of diffusion-limited spreading has been proposed (Mortensen et
al. 1997), in which it was assumed that in a small volume near the triple line diffusion
is the dominating mechanism for solute transport. Inside this volume modelled as a
straight wedge of angle θ (figure 6), the velocity VF is taken equal to VTL such that
equation (3.3) reduces to

∂C

∂t
= D∇2C. (3.4)
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Figure 6. Schematic description of the advancing triple line driven by localized chemical
reaction requiring solute transport in the liquid.

Neglecting the reaction at the interface far from the triple line, equation (3.4) was
solved in cylindrical coordinates (r,Φ) (Mortensen et al. 1997). The main result of
this analysis is that, although diffusion in the sessile drop configuration is basically
unsteady, an accurate steady-state solution was found in which the reaction rate at
the triple line, and hence the spreading rate, depends only on the configuration of
the triple line or, in other words, on the instantaneous contact angle θ (Mortensen
et al. 1997):

dR
dt

=
2DF (C0 − Ce)θ

env
. (3.5)

In this equation, F is a constant close to 0.04, e is the thickness of the reaction
product layer at the triple line and nv is the number of moles of reactive species per
unit volume of the reaction product. C0 is the concentration of the reactive species
in the bulk drop and Ce is the equilibrium concentration assumed to be attained
inside a small volume of radius a near the triple line (see figure 6) (a being on the
order of a few atomic jumps in the liquid, typically 10−9 m). Note that for the sake
of homogeneity, the units of C0 and Ce in equation (3.5) are moles per unit volume
of the liquid. For millimetre-size droplets, forming nearly spherical cups, and contact
angles not too high (θ 6 60◦), θ is closely approximated by 4Vd/πR

3 where Vd is the
drop volume. Equation (3.5) is then easily integrated to give

R4 −R4
0 = Kt, (3.6)

where K is a constant for a given system, temperature, drop volume and concentra-
tion C0.

In the framework of this model, solute gradients are localized near the triple line
within a volume of radius δ approximately equal to a exp(1/(2F )). For values of
a of a few nm, δ is of the order of tens of micrometers. This discussion allows
to check a posteriori the validity of the quasi-stationary approximation, using an
approach similar to that followed in the related problem of mass transport ahead
of a solidification interface (Garandet 1993). Indeed, let us denote τ the typical
time scale of the composition field; the time-dependent and the Laplacian term in
equation (3.4) will thus be proportional to (1/τ) and (D/δ2), respectively. In our
present problem, taking τ = 100 s, D = 3× 10−9 m2 s−1 and δ = 20 µm, Dτ/δ2 is of
the order of 1000 and the process can thus be safely taken as quasi-stationary.
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Existing data on reactive wetting in metal–ceramic systems are usually given only
as plots of contact angle versus time. Although from these results it may be concluded
that in many systems spreading is nonlinear, no quantitative comparison between
these data and equation (3.6) is possible. In a recent study, for the high reaction
rate Cu-1 at.% Cr/Cv system, for which the spreading time is only 100 s, i.e. about
100 times shorter than in Al/Cv couple, the value of exponent n giving the best
fit of the experimental R(t) curves was found to be in the range 5.5–6.5 (Voitovich
et al. 1998). These values are very different from n = 10, which is characteristic of
viscous spreading, and from n = 1, typical of reaction-limited spreading. However,
the values are higher than n = 4 calculated for pure diffusion. A possible reason for
this disagreement is that convection in the drop has been neglected in this model.

(ii) Convection
In experimental practice, one can expect that solute will also be carried out by

convective movements in the drop. Indeed, the density gradients related to temper-
ature and composition differences interact with gravity to sustain a fluid motion.
In addition, temperature and composition differences at the liquid–vapour interface
give rise to Marangoni convection. To account for this convective effect, we shall
rely on a former work carried out in a crystal growth configuration, where an equa-
tion similar to equation (3.3) governs solute repartition in the melt. It was seen in
Garandet (1993) that both advection and convection could be combined in a single
‘effective’ velocity Veff , defined as

Veff = D/δ = VTL − VF(δ), (3.7)

where δ stands for the solutal boundary layer thickness. Note that with our choice
of notation VF(δ), the fluid flow velocity at the boundary layer scale, is negative, but
that Veff is always positive (Garandet 1993).

In this section, we shall suppose that convection is a relevant mass transport
mechanism, i.e. that fluid flow carries a significant amount of solute to the triple
line. Whatever the physical origin of fluid flow, its expected effect will be to increase
solute transport and to reduce the thickness δ of the solutal boundary layer in the
vicinity of the triple line. In the mathematical formulation of the problem, we can
thus safely neglect the time dependence of the composition field and consider the
process as quasi-stationary, as discussed above. We thus look for a solution to the
equation

D∇2C + Veff · ∇C = 0, (3.8)
C being the solute composition expressed in mass fraction. At this point, Veff should
be taken as a mathematical auxiliary, but we shall return later to its physical basis.

In the frame of the present work, we are more interested in the identification of
relevant transport mechanisms than with an accurate description of the problem
geometry. We shall thus simplify matters and use a one-dimensional approach in
Cartesian coordinates (see figure 7) to derive the composition gradient in the vicinity
of the triple line. Equation (3.8) thus becomes

Dd2C/dx2 + VeffdC/dx = 0. (3.9)

The solution to equation (3.9), along with boundary conditions C = Ce in x = a and
C = C0 as x→∞ is simply

C = exp(Veffa/D)(Ce − C0) exp(−Veffx/D) + C0. (3.10)
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Figure 7. One-dimensional representation of the vicinity of the triple line at the solutal
boundary layer scale δ.

Using this expression, the mass flux at the abscissa x = a can be written as

|J | = ρLD
dC
dx

∣∣∣∣
x=a

= ρL(C0 − Ce)Veff , (3.11)

where ρL is the mass density of the liquid. Assuming, that θ is small enough to ensure
tan θ ≈ θ, the integrated mass flux at the abscissa x = a is given by

|Jt| = ρL(C0 − Ce)Veff2πRθa. (3.12)

In this expression of the total mass flux, we implicitly supposed convective transport
to be negligible at the scale a, which is a fairly safe assumption. The mass balance
in x = a can be written as

ρL(C0 − Ce)Veffθa = ρPCPe(dR/dt). (3.13)

In the above expression ρP and CP denote the mass density and the solute mass
fraction of the product, respectively.

We now have to specify in more detail the physical sources of fluid flow in order
to obtain quantitative informations about the spreading kinetics. Our first hypoth-
esis will be to consider that solutal convection is negligible with respect to thermal
convection. This may seem to be an a priori surprising assumption since it is well
known that density and surface tension can both be very sensitive to the presence of
solutes, even at low concentrations in the case of tensioactive species. However, we
have seen that the composition variation, as evaluated by the pure diffusion model,
occurs on a very limited length scale (ca. δ = 20 µm), meaning that the flow has
very little room to develop. Indeed, an order of magnitude analysis carried out in
a recent work (Alboussiere et al. 1997) indicates that an a priori higher density
gradient due to composition differences is less efficient as a convective driving force
than temperature-induced density variations, the reason being that the latter take
place over the whole fluid body. In the present paper, we shall only consider thermal
convection but it should be kept in mind that in concentrated systems with large
variations of density with composition, or in the case of tensioactive species, solutal
convection could have an impact.
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The next step is to estimate the relative influences of bulk and Marangoni convec-
tion in a spreading drop. To do so, we shall rely on the parallel flow solution obtained
by Birikh (1966) in a layer of height h submitted to a constant thermal gradient,
where the velocity at the liquid–vapour interface is given by

U = (ν/h)[−1
4 ReM + 1

48 Gr ], (3.14)

where ν represents the kinematic viscosity of the fluid. The non-dimensional
Reynolds–Marangoni (ReM) and Grashof (Gr) numbers are defined as

ReM = σ′TGh
2/ρLν

2, (3.15)
Gr = βTgGh

4/ν2. (3.16)

The above expressions include thermophysical properties of the fluid, namely ρL, ν,
σ′T, derivative of its surface tension with respect to temperature and βT its thermal
expansion coefficient. The experimental conditions are characterized by h, the drop
height, and G, the thermal gradient in the drop, with g denoting the acceleration
due to gravity. Taking reasonable values, e.g. ρL = 10 kg m−3, ν = 3× 10−7 m2 s−1,
σ′T = 2× 10−4 J m−2 K−1, βT = 10−4 K−1, g = 10 m s−2 and h = 1 mm, we get

ReM = 0.22G, Gr = 0.01G (G in K m−1). (3.17)

It thus appears clearly from equation (3.14) that bulk natural convection can be
safely neglected in comparison with Marangoni convection. To quantify matters,
we need to estimate the thermal gradient inside the drop. In typical sessile drop
isothermal furnaces, residual thermal gradients lie between 0.1 and 0.5 K mm−1.
Taking ReM = 100, we find that the fluid velocity in the drop is in the cm s−1 range.
Incidentally, at such a limited value of ReM, the flow is expected to be laminar.

Nevertheless, we still have to estimate the magnitude of the fluid velocity VF at the
composition boundary layer scale δ. As discussed in the related problem of solutal
transport in crystal growth configurations (Garandet 1993), this is indeed the scale at
which convection needs to be effective. Since we deal here with thin boundary layers,
we should expect VF to be significantly smaller than U . To get a rough estimate for
VF(δ), we assume that the balance between surface tension and viscous forces used
to derive equation (3.14) can be written at the boundary layer scale, i.e. when the
drop height is h′. As can be seen in figure 7, h′ and δ are related by tan θ = h′/δ,
meaning that they are of the same order of magnitude. The fluid velocity at the scale
δ can thus be estimated as

VF(δ) = (|σ′T|G/ρLν)1
4h
′. (3.18)

Taking h′ = 40 µm (resp. h′ = 10 µm) along with the above values and G =
0.5 K mm−1 we get VC = 300 µm s−1 (resp. VC = 75 µm s−1). Assuming once more
that θ is small enough to ensure tan θ ≈ θ, we get

VF(δ) = (|σ′T|G/ρLν)(1
4δθ). (3.19)

The above values of the convection velocity are indeed much smaller than U , but
they are still significantly higher than the velocity of the triple line which is of the
order of 10 µm s−1 in many practical cases (Voitovich et al. 1998; Drevet et al. 1996).
We can thus assume that convection is indeed the dominant solute transport mode
and drop the VTL term in equation (3.7) or in other words set Veff = −VF(δ). The
relation Veff = D/δ thus yields

δ = 2(ρLνD/|σ′T|G)1/2θ−1/2. (3.20)
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Reporting this value of δ in equation (3.19) and in turn equation (3.19) in the mass
balance equation (3.13), we get

(1/θ3/2)dR/dt = 1
2(ρL/ρP)[(C0 − Ce)/CP](a/e)(|σ′T|GD/ρLν)1/2. (3.21)

Assuming once more that θ � 90◦ and setting θ = 4Vd/πR
3, we find that R9/2 dR/dt

is constant, and we finally get upon integration

R11/2 −R11/2
0 = αt, (3.22)

where α represents a proportionality factor given by

α = 22/π3/2(ρL/ρP)[(C0 − Ce)/CP](a/e)(|σ′T|GD/ρLν)1/2V
3/2

d . (3.23)

We have thus obtained an analytical expression for the drop spreading kinetics when
temperature-driven Marangoni convection can be considered as the dominant solu-
tal transport mechanism. Experimental results for the Cu-1 at.% Cr/Cv system
(n = 5.5–6.5) (Voitovich et al. 1998) agree much better with equation (3.22) than
with equation (3.6) established in the case of diffusive transport. Such a good agree-
ment between experiment and the model based on Marangoni convection should be
taken as coincidental in view of the large number of simplifying assumptions. The
most significant result of this analysis is that in the case of millimetre-size droplets,
Marangoni convection can significantly increase solutal transport with regard to the
purely diffusive regime.

4. Conclusions

From the analysis of experimental data for model metal–ceramic systems, it
appears that the final contact angle in a reactive system is given with good accuracy
by Young’s (or the equilibrium) contact angle of the liquid on the reaction product.
Reactive systems feature either linear or nonlinear R(t) spreading, corresponding to
reaction-controlled and to transport-controlled regimes, respectively.

One of the purposes of the present study was to discuss the possible effects
on spreading kinetics of various types of convection, i.e. thermal/solutal and
bulk/Marangoni. Except for reactive solutes, which are also tensioactive at the liq-
uid alloy free surface, or for alloys highly concentrated in reactive solutes, Marangoni
convection generated by thermal gradients appears to be the most effective trans-
port mode. Calculations show that, in the case of millimetre-size droplets, Marangoni
convection can significantly modify the spreading law (exponent n and constant K
in Rn ≈ Kt) established for the purely diffusive regime. However, before concluding
on the relative importance of the two transport mechanisms, i.e. convection and dif-
fusion, current models have to be improved to take into account other phenomena
likely to modify the values of n and K, namely some delocalization of the reaction
ahead of the triple line (for instance by evaporation/condensation) or behind the
triple line (by diffusion through the reaction product layer).
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Appendix A. List of symbols

a radius of the region where C = Ce
C concentration of reactive species (mass fraction)
Ce equilibrium concentration of reactive species (mass fraction)
C0 concentration of reactive species in the bulk (mass fraction)
CP mass fraction of reactive species of the reaction product
D diffusion coefficient in the liquid
e thickness of the reaction product layer at the triple line
F constant close to 0.04
Fd wetting driving force
g gravity acceleration
G thermal gradient
Gr Grashof number
h height of the drop at its centre
h′ height of the drop at position δ
J mass flux
Jt total mass flux
K constant of Rn ≈ Kt law
L liquid
n exponent of Rn ≈ Kt law
nv number of moles of reactive species per unit volume

of the reaction product
P reaction product
r radius in cylindrical coordinates
R drop base radius
R0 initial drop base radius
ReM Reynolds Marangoni number
S solid
Sc Schmidt number
t time
U convective velocity at the L–V interface
V vapour
Vd drop volume
Veff effective velocity
VF velocity of the fluid
VTL velocity of the triple line
x one-dimensional coordinate
βT thermal expansion coefficient
δ thickness of the solute boundary layer
∆Gr change in Gibbs energy of the reaction
Φ angle in cylindrical coordinates
ν kinematic viscosity of the fluid
θ contact angle
θF final contact angle
ρL mass density of the liquid
ρP mass density of the reaction product
σ surface energy
τ time scale of reactive spreading
σ′T derivative of σ with respect to temperature
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